Numerical Blow-Up of Nonlinear Parabolic Integro-Differential Equations on Unbounded Domain

نویسندگان

  • Hermann Brunner
  • Tao Tang
  • Jiwei Zhang
چکیده

We study the numerical solution of semilinear parabolic integro-differential PDEs on unbounded spatial domains whose solutions blow up in finite time. We first introduce the unified approach to derive the nonlinear absorbing boundary conditions for one-dimensional and two-dimensional domains, then use the fixed point method to achieve a simple but efficient adaptive time-stepping scheme. The theoretical results are illustrated by a broad range of numerical examples, including a problem with a circle line blow-up. 2000 Mathematics Subject Classification: 65M06, 65L10, 35Q53, 35Q51.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

From Nonlinear PDEs to Singular ODEs ?

We discuss a new approach for the numerical computation of self-similar blow-up solutions of certain nonlinear partial differential equations. These solutions become unbounded in finite time at a single point at which there is a growing and increasingly narrow peak. Our main focus is on a quasilinear parabolic problem in one space dimension, but our approach can also be applied to other problem...

متن کامل

Computational Solution of Blow-Up Problems for Semilinear Parabolic PDEs on Unbounded Domains

A numerical treatement of a model of semilinear parabolic equations on unbounded domain where the solutions blow up in finite time is presented. The numerical approximation requires selecting an appropriate bounded computational domain. The authors present suitable local absorbing boundary conditions (LABCs) in order to derive the bounded computational domain. A unified approach to derive such ...

متن کامل

Blow-up solutions of nonlinear Volterra integro-differential equations

The paper studies the finite-time blow-up theory for a class of nonlinear Volterra integro-differential equations. The conditions for the occurrence of finite-time blow-up for nonlinear Volterra integro-differential equations are provided. Moreover, the finite-time blow-up theory for nonlinear partial Volterra integro-differential equations with general kernels is also established using the blo...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2016